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Yaks, native to high-altitude regions, exhibit remarkable adaptations to the challenging environments they 
inhabit. Over generations, these robust animals have evolved various physiological, morphological, biochemical, 
and genetic traits through natural selection. These adaptations allow them to thrive in conditions characterized 
by low temperatures and oxygen pressure. Notable features include their thick, insulating coats, efficient 
respiratory systems, and specialized metabolism suited for high-altitude forage. Such unique evolutionary 
adjustments enable yaks to navigate the harsh terrains and limited resources of their high-altitude habitats, 
showcasing their exceptional resilience and suitability to these challenging ecosystems. Through extensive 
selective pressures over time, yaks have developed stable and distinctive genetic traits that facilitate their 
physiological, biochemical, and morphological adaptations to high-altitude environments. Consequently, yaks 
serve as a representative model for investigating mammalian adaptability to plateaus. The comprehension of 
these adaptive mechanisms offers unparalleled insights into evolutionary adaptations, with direct implications 
for the selective breeding of domesticated yaks. This review provides a comprehensive overview of the genetic 
adaptations in yak to the rigors of high-altitude environmental stress. Advances in genomics and theoretical 
frameworks have collectively illuminated the genetic underpinnings of high-altitude adaptations.

INTRODUCTION

The yak (Bos grunniens) is a native and scarce species 
of bovine found in the Qinghai-Tibet Plateau and 

surrounding areas, thriving at altitudes exceeding 2500 
m (Wang et al., 2021). Referred to as the third pole, the 
Tibetan plateau constitutes the world’s largest and highest 
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year-round grazing expanse. This region is characterized 
by severe climatic conditions, including extreme cold, 
aridity, high ultraviolet radiation, and hypoxia, posing 
challenges to the survival of both humans and other 
mammals (Guo et al., 2021; Jiang et al., 2023). The yak, 
serving as an iconic representation of high altitudes and a 
vital resource for the Tibetan people, exhibits anatomical 
and physiological adaptations, a genetic foundation for 
mammalian adjustments, and a co-evolved microbiome 
that collectively prepare the animal for the challenges of 
high altitude and the harsh environment. However, the 
regulatory network governing this hypoxic adaptation 
remains unclear (Xin at al., 2022; Yang et al., 2022). 
Endothermic animals in these high-altitude regions 
face challenges due to reduced oxygen levels, which 
impact cellular functions and physiological performance. 
These mountainous areas are highly sensitive to climate 
change, posing a significant threat to biodiversity and the 
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ecosystem (Ghatak et al., 2014). Furthermore, the cold 
climate, with temperatures dropping by approximately 
6°C per kilometer in elevation, adds to the environmental 
harshness (Vuille, 2011). Other factors, such as late winter 
and early spring, food scarcity, and snow cover, contribute 
to severe malnutrition and weight loss among animals 
(Yang et al., 2022; Liu et al., 2023). Species in these 
extreme terrestrial environments have evolved unique 
characteristics through natural selection to adapt (Key and 
Sneeringer, 2014; Burtscher et al., 2018).

The yak holds significant importance in the lives 
and economic endeavors of the inhabitants residing in 
the extensive and challenging Qinghai-Tibetan plateau, 
as well as the surrounding mountainous areas (Shah et 
al., 2023). Yaks, the world’s most remarkable domestic 
animals, thrive and reproduce in the challenging plateau 
environment (Miao et al., 2015). Domestication of yaks 
occurred more than 7300 years ago by early nomadic 
people, and they remain the only large animals coexisting 
with their wild ancestors in a similar environment (Qiu et 
al., 2015). Globally, there are over 17.6 million yaks, with 
the majority residing in the plateau regions of central Asia, 
covering approximately 2.5 million square kilometers 
around the Qinghai-Tibetan Plateau and adjacent 
highlands (Ma et al., 2013). From the very beginning, the 
domesticated yak, which traces its origins back to the wild 
yak, has been not just a primary source of sustenance for 
herders and their families but has also held a substantial role 
in shaping their culture, religion, and social interactions 
(Liu et al., 2023). Yaks provide essential resources (milk, 
meat, hair, hides, and manure) and services (draft, packing, 
and riding) to pastoralists and agro-pastoralists in these 
areas. Yaks also serve as pack animals, capable of covering 
distances of up to 15 km per day in high-altitude regions 
while bearing loads weighing up to 100 kg (Sapkota et al., 
2022). They also hold financial and cultural significance, 
including status, dowry, and religious festivals (Liu et al., 
2023). Yaks serve as a valuable model for studying natural 
and artificial selection in livestock domestication and 
adaptation to diverse environments.

The yak (Bos grunniens) is a characteristic ruminant 
species found on the Qinghai–Tibet Plateau (Wu et 
al., 2021). As the only bovine species native to the 
Qinghai-Tibetan Plateau and adjacent highlands, yaks 
exhibit exceptional adaptability to high altitudes, cold 
temperatures, low oxygen pressure, and prolonged periods 
of food scarcity (approximately half a year) (Ghatak et 
al., 2014; Liu et al., 2021; Wang et al., 2011; Lan et al., 
2016). Natural and artificial selection has led to distinct 
yak breeds with unique morphological, physiological, 
and adaptability traits that enhance survival in harsh 
environments (Qiu et al., 2012; Zhang et al., 2016; Lan 

et al., 2018). Studying yak aerobic metabolism under 
hypoxic conditions offers insights into adaptive evolution 
(Ding et al., 2014). Combined with advanced molecular 
and genetic research, this knowledge forms the basis 
for investigating the genetic mechanisms related to 
adaptability to climate change, a current research focus 
(Yang et al., 2016; Friedrich and Wiener, 2020).

Altitudinal variations in physiological traits have 
been extensively studied across various species, and 
there is a relatively comprehensive understanding of 
physiological acclimation and acclimatization responses 
to hypoxia and cold exposure in endothermic vertebrates 
(Liu et al., 2023; Ding et al., 2020). However, it remains 
somewhat unclear how yaks residing on the Qinghai-
Tibetan plateau have specifically adapted physiologically 
to the exceptionally low partial pressures of oxygen. 
Additionally, the increased metabolic cost of maintaining 
body temperature in the face of extremely low ambient 
temperatures is not clearly understood (Ayalew et al., 
2021; Qiang, 2023). Understanding the mechanisms 
underlying adaptation to different agro-ecosystems 
is crucial for effective farm animal genetic resource 
management (Key and Sneeringer, 2014; Rojas-Downing 
et al., 2017). Intriguingly, multiple studies have focused 
on yak adaptation, allowing researchers to understand the 
morphological, physiological, biochemical, and genetic 
mechanisms of adaptation to extremely high altitudes (Qiu 
et al., 2012; Lan et al., 2016; Guang-Xin et al., 2019a; 
Wu et al., 2015; Guang-Xin et al., 2019b). Although 
research on the adaptation mechanisms of the yak in high 
altitudes has increased exponentially, review studies on 
the comprehensive, adaptive mechanisms remain scarce. 
Therefore, this review attempts to collate and synthesize 
current knowledge on the mechanisms of yak adaptation 
to high altitudes. Furthermore, it can also provide new 
avenues for in vitro and in vivo studies to further test 
hypotheses arising from previous investigations and 
options for designing and implementing interventions for 
improved yak productivity and resilience in high altitudes.

HOW YAKS ADAPT TO HIGH ALTITUDES

Altitude adaptation pertains to the capacity developed 
through natural selection in animals or plants, enabling them 
to thrive in plateau environments characterized by factors 
such as thin air, low oxygen content, intense ultraviolet 
rays, and low pressure over an extended period. The central 
aspect of altitude adaptation lies in the organism’s ability 
to optimize the uptake and utilization of limited oxygen, 
ensuring the fulfillment of daily physiological processes in a 
low-oxygen environment (Xiang-Dong et al., 2019; Qiang, 
2023). In recent years, there has been a growing interest 
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in the mechanisms governing the adaptation of organisms 
to high-altitude environments, with yaks (B. grunniens) 
emerging as iconic symbols of the Tibetan Plateau (Ge et al., 
2021a). High altitudes negatively impact the normal bodily 
functions of individuals, whether they are accustomed or 
unaccustomed to such environments. Mishra and Ganju 
(2010) reviewed environmental factors at high altitudes, 
such as cold and hypobaric hypoxia, which affect the 
immune system, making it more susceptible to conditions 
like cancer, infections, and autoimmune diseases (Mishra 
and Ganju, 2010). Inadequate hypoxia management 
affects reproduction and fertility traits, including reduced 
intrauterine growth in sheep (Parraguez et al., 2005) and 
impaired development and function of the corpus luteum 
(Parraguez et al., 2013). There should be an increased focus 
on breeding and managing animals for improved resilience 
to applied stressors (Colditz and Hine, 2016). To adapt to 
high-altitude environments, plateau-dwelling mammals 
have developed some distinct characteristics. The yak, a 
unique breed that inhabits the alpine pastoral area of the 
Tibetan Plateau, is one of the rare bovine breeds adapted 
to high altitudes and cold climates (Lan et al., 2016; Fu et 
al., 2014).

To cope with the challenges of high altitude, both 
humans and animals have undergone physiological 
and morphological adaptations to thrive in the harsh 
environment. Mammals, when exposed to high altitudes, 
display various physiological responses, such as an increased 
capacity for oxygen transport in the blood facilitated by 
improved hemoglobin function (Xiang-Dong et al., 2019; 
Li et al., 2022; Qiang, 2023). This enhancement enables 
a higher performance capacity, specifically the maximum 
oxygen consumption (VO2 max), crucial for sustaining life 
in low-oxygen conditions (Ge et al., 2021b; Li et al., 2022). 
The genetic basis for high-altitude adaptation has been 
extensively investigated in humans and animals, including 
ruminants (Xin et al., 2021). In ruminants, the demanding 
conditions of high altitudes impact not just the host but 
also their commensal microbiota, particularly influencing 
the diversity and composition of the rumen microbiota. 
Numerous studies have explored the tripartite interactions 
among the host, environment, and rumen microbiota (Xin 
et al., 2021; Li et al., 2022). Comprehensive and thorough 
investigations into high-altitude adaptation have been 
conducted across various levels, including morphology, 
anatomy, hemodynamics, physiology, and genomics (Ge et 
al., 2021b).

YAK’S MORPHOLOGICAL ADAPTATIONS 
TO HIGH-ALTITUDE ENVIRONMENTS
Morphological adaptations refer to physical changes 

that occur over multiple generations in animals to enhance 

their adaptability to a specific environment. Yaks have 
evolved a range of morphological features that enhance 
their ability to thrive in high-altitude environments (Ayalew 
et al., 2021). These adaptations include enlarged lungs and 
heart optimizing their resilience in regions with lower 
oxygen levels, a shorter tongue improving their efficiency 
in food consumption amid challenging conditions, stronger 
environmental sensing aiding their adept navigation in 
high-altitude terrains, an elevated energy metabolism 
and the absence of hypoxic pulmonary vasoconstriction 
which distinguishes the yaks in their adaptation to the 
physiological challenges of high altitudes (Xin et al., 
2020; Wang et al., 2021; Qiu et al., 2012; Sapkota et 
al., 2022). Over countless generations, the native high-
altitude B. grunniens, despite their close relation to cattle, 
have successfully adapted to the chronic low-oxygen 
conditions of high altitudes. The exceptional adaptability 
of yaks to high-altitude environments is associated with 
the development of unique morphological mechanisms. 
Compared to their close relatives like cattle that inhabit 
lower altitudes, yaks have relatively larger lungs and 
hearts (Guan et al., 2017). Additionally, yaks have longer, 
wider, and rounder pulmonary artery endothelial cells with 
fewer smooth muscles, which enable better performance 
in high-altitude environments compared to cattle (Wang et 
al., 2006, 2021; Shao et al., 2010).

Heat conservation in yaks is achieved through a 
combination of factors, including a compact body, a dense 
outer coat of thick hair, and a fine undercoat during winter 
(Bao et al., 2021). The yak’s resilience to cold is further 
supported by its compact physique, featuring a short neck, 
limbs, tail, small ears, and the absence of a dewlap. Both 
the male’s scrotum and the female’s udder are small and 
covered in hair. Additionally, the yak possesses a relatively 
small surface area per unit of body weight, limited sweat 
glands, and thick skin with non-functioning sweat glands. 
By autumn, a substantial layer of subcutaneous fat further 
contributes to thermal insulation. Oxygen uptake is 
facilitated by the yak’s large lungs and heart, coupled with 
rapid breathing and hemoglobin characterized by a high 
affinity for oxygen (Wang et al., 2016; Xiong et al., 2020; 
Chen et al., 2022; Deng and Xu, 2021). The challenges 
of high-altitude environments go beyond hypoxia, as 
freezing temperatures and limited food supply contribute 
to their harshness. Yaks inhabit alpine regions at altitudes 
ranging from 3000 to 6000 meters, where there is no frost-
free period throughout the year. Yaks are well-suited to this 
cold, high-altitude environment; they have compact bodies 
with reduced skin surface area per unit of body weight 
(0.016 m2/kg). They lack functional sweat glands, which 
enhances their cold tolerance (Krishnan et al., 2016).

Moreover, the thick fleece covering their entire bodies 
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helps conserve heat. This thick fleece consists of an outer 
layer of long hair and an undercoat composed of a dense 
layer of fine down fibers that appear during colder seasons 
to retain body heat and repel moisture (Weimer et al., 2009). 
Feeding mechanisms play a crucial role in the success and 
survival of vertebrate species in their environments (Shah 
et al., 2023). High-altitude alpine habitats are characterized 
by severe climates, short growing seasons, limited grazing 
resources, and challenging terrain, leading to severe 
malnutrition and weight loss among animals (Weimer et 
al., 2009; Long et al., 2008). Yaks have developed shorter 
tongues with greater lingual prominence, larger and 
more numerous conical papillae, and thicker keratinized 
epithelium compared to domestic cattle. These attributes 
enable yaks to consume a wider variety of pasture plant 
species (Shao et al., 2010). Additionally, yaks have an 
unusually large rumen relative to omasum, allowing 
them to consume large quantities of low-quality food and 
ferment it for an extended period to extract more nutrients 
during nutritional scarcity (Weimer et al., 2009).

Yaks exhibit exceptional adaptation to extreme cold 
conditions, demonstrating the ability to endure temperatures 
as low as -40°C. Their optimal performance occurs in 
environments where the average annual temperature 
remains below 5°C, and the average temperature during 
the warmest month stays below 13°C (Liu et al., 2021; 
Sapkota et al., 2022). The primary cold-resistant features 
of yaks include: (1) a compact body structure characterized 
by a short neck, limbs, and tail, coupled with small ears, 
resulting in minimal surface area for heat dissipation; the 
presence of a lengthy and dense outer hair layer on the 
chest, legs, and flanks, effectively trapping air against 
the body; and a dense yet fine undercoat of downy hairs 
(Guan et al., 2017; Deng and Xu, 2021). The outer hairs 
originate from primary hair follicles, while the downy coat 
is produced by secondary follicles. The ratio between these 
two types of follicles is highly seasonal, with a notable 
increase in secondary follicles during colder periods. It 
is crucial to emphasize that these adaptations primarily 
aim to minimize heat loss, as generating additional heat 
from winter forage would be energetically challenging. 
Despite these adaptations, yaks are susceptible to heat 
stress, exacerbated by the absence of functional sweat 
glands, with the limited sweating ability confined to the 
muzzle (Wang et al., 2021; Sapkota et al., 2022; Xin et 
al., 2020). The thick skin, sparse distribution of blood 
vessels, and low density of sweat glands in yaks contribute 
to their effective adaptation to cold environments at high 
altitudes. However, extended exposure to the hyperthermal 
environment typical at lower altitudes, and even in their 
natural habitat at high altitudes, can lead to heat stress (HS) 
and oxidative stress (Yang et al., 2022; Wu et al., 2021).

YAK’S PHYSIOLOGICAL ADAPTATIONS TO 
HIGH-ALTITUDE CHALLENGES

Physiology encompasses mechanisms and processes 
that enable organisms to cope with internal challenges 
(such as exercise, growth, and reproduction) and external 
stresses (such as variations in temperature, oxygen levels, 
water availability, salinity, pressure, radiation, and heavy 
metals). Yaks inhabit the entire Qinghai-Tibetan Plateau, 
and their physiological adaptations have played a crucial 
role in their ability to thrive in hostile environmental 
conditions (Wu et al., 2013). Chronic hypoxia is the 
primary stressor in high-altitude conditions, affecting the 
efficient functioning of the respiratory and cardiovascular 
systems in mammals and birds (Ivy and Scott, 2015).

Physiologically, high-altitude domesticated yaks have 
developed various strategies to adapt to chronic hypoxia. 
They are recognized for their pulmonary arterial resistance 
and a diminished capacity for vasoconstriction (Fang 
et al., 2020). These yaks possess numerous anatomical 
and physiological traits that equip them for life at high 
altitudes, including large lungs and hearts, predominant 
lignocellulose degradation and highly efficient energy 
metabolism (Qiang, 2023). In recent years, there has 
been widespread attention on the organic mechanisms 
that mediate adaptation to high-altitude environments. 
Genomes of mammals inhabiting highlands, including 
human highlanders, have been sequenced, revealing many 
genes associated with altitude adaptation. A focus on the 
mechanisms behind transcriptomic changes can offer 
insights into the adaptive evolution of other plateau species, 
including humans (Ge et al., 2021b). Yaks, owing to their 
prolonged colonization and widespread distribution on 
the plateau, serve as ideal models for studying adaptation 
to plateau environments. Compared with lowland cattle, 
yak lungs have developed physiological characteristics 
adapted to high-altitude hypoxia. These include a larger 
pulmonary alveolar area per unit, a thinner alveolar septum, 
a thinner blood–air barrier, and smooth muscles within 
the arteriole wall of microarteries with a diameter of < 50 
mm features absent in lowland cattle. These physiological 
adaptations facilitate more efficient blood flow for oxygen 
transport under hypobaric hypoxia (Xin et al., 2021; Liu 
et al., 2023). The lung, a central functional organ in the 
respiratory system, plays a substantial role in adapting to 
hypoxia in plateau environments. In addition to enabling 
an animal’s body to adapt to external environmental 
stimuli through a series of physiological changes, gene 
expression, as an intermediate phenotype linking DNA 
sequences and physiological traits, plays a crucial role in 
revealing molecular pathways/networks associated with 
genetic adaptation. There is growing evidence that changes 
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in gene expression are also essential for adaptation to high 
altitudes (Wang et al., 2016; Ge et al., 2021b; Bao et al., 
2021).

Interestingly, prolonged exposure to high altitudes 
increases the physiological response of yaks to chronic 
hypoxia. Yaks have a larger pulmonary alveolar area 
per unit area, thinner alveolar septum, thinner blood-air 
barrier, larger hearts and lungs, and higher concentrations 
of erythrocytes and hemoglobin than other cattle species 
(Guan et al., 2017). Thin-walled pulmonary arteries with 
minimal smooth muscle and the absence of right ventricular 
hypertrophy are additional hypoxic adaptations observed 
in yaks (Ding et al., 2014). These characteristics and 
changes in the cardiovascular system compensate for the 
hypobaric high-altitude environment (Fang et al., 2020). 
Hypoxia adaptation serves as a protective mechanism 
within the body, established to sustain fundamental 
life activities in high-altitude or specialized hypoxic 
working environments. This adaptive response addresses 
challenges arising from obstacles in the body’s oxygen 
acquisition and transport, as well as hypoxia induced 
by various diseases. From a physiological perspective, 
hypoxia adaptation is characterized by a multi-system and 
multi-level coordination effect, manifesting as enhanced 
cardiovascular functions, increased oxygen-carrying 
capacity in the blood system, and greater efficiency in 
tissue oxygen (Bao et al., 2021; Ding et al., 2020).

This adaptation is likely a result of natural selection, 
which enhances the hypoxic pulmonary vasoconstrictor 
response, increasing red blood cell production and 
hemoglobin concentrations in yaks (Ding et al., 2014). 
Research has shown that chronic exposure to hypoxic 
conditions leads to an increase in blood/erythrocyte 
volume in high-altitude native animals, facilitating 
oxygen delivery to tissues through hyperventilation, 
hemoconcentration, and stimulated erythropoiesis (Xin et 
al., 2021; West, 2015, 2017).

Adaptation often comes at the cost of performance, 
and animals with lower performance often have better 
survivability due to lower input requirements, especially 
in terms of feed, and moderate internal heat production 
(Gaughan et al., 2019). In their natural habitat, yaks 
must maintain normal energy production under hypoxic 
conditions (Wang et al., 2011), optimize nutritional 
assimilation due to cold stress (Fang et al., 2020), and cope 
with limited feed resources (Shah et al., 2023). To combat 
cold stress, yaks employ peripheral vasoconstriction to 
prevent heat loss, along with heat production through 
mechanisms such as shivering and uncoupled mitochondrial 
activity (Manou-Stathopoulou et al., 2015). Additionally, 
many cold-adapted species can temporarily reduce their 
metabolism in response to harsh environmental conditions, 

leading to torpor or, in extreme cases, hibernation (Ruf and 
Geiser, 2015). Yaks exhibit a significant reduction in heat 
production during winter, likely due to their adaptation to 
low oxygen concentrations in the air, the cold environment, 
and prolonged undernutrition during the six-month-long 
cold season of the Tibetan plateau (Jiang et al., 2023).

BIOCHEMICAL ADAPTATIONS FOR 
HIGH-ALTITUDE SURVIVAL IN YAKS

There are limited reports on heat stress (HS) in yaks 
raised at low altitudes during high-temperature seasons. 
Recent studies have indicated the involvement of oxidative 
stress in the mechanisms underlying animal stress (Wu et 
al., 2021; Zhang et al., 2022). Certain free amino acids 
(AAs) exhibit antioxidant properties as a response to HS. 
Additionally, free fatty acids (FFAs) and other nutrients 
are utilized for oxidative phosphorylation to address the 
negative energy balance in animals experiencing HS. In the 
context of heat stress conditions, the levels of circulating 
AAs, FFAs, and other nutrients may undergo alterations as 
part of thermal adaptation (Yang et al., 2022; Khan et al., 
2023; Huang et al., 2022; Fan et al., 2020).

The cold, hypoxic conditions of high-altitude habitats 
impose severe metabolic demands on endothermic 
vertebrates. Understanding how high-altitude endotherms 
cope with the combined effects of hypoxia and cold can 
provide important insights into the process of adaptive 
evolution. Biochemical adaptations offer fascinating 
insights into how organisms’ function and evolve to 
maintain physiological processes under a wide range 
of environmental conditions. Yaks exhibit remarkable 
biochemical adaptations that enable them to thrive in the 
challenging environment of the Qinghai-Tibetan plateau, 
characterized by altitudes exceeding 2000 m (Bao et al., 
2021; Shah et al., 2023). One of the key adaptations is their 
high blood hemoglobin concentrations, which enable them 
to tolerate the low atmospheric partial pressures of oxygen 
at high altitudes. The lower energy metabolism observed 
in yaks may result from their adaptation to the low oxygen 
concentration in the air, the cold climate, and the prolonged 
period of undernutrition during the annual six-month-long 
cold season of the Qinghai-Tibetan plateau. Yaks rely on 
their rumen microorganisms to ferment approximately 70-
80% of their feed intake, producing volatile fatty acids that 
provide 60-75% of their required metabolic energy. This 
phenomenon may represent a coevolutionary strategy to 
cope with the limited feed resources in cold environments 
(Zou et al., 2019).

In comparison to indigenous cattle, yaks exhibit a 
lower rate of urinary nitrogen excretion, possibly as an 
adaptation to cope with poor feed availability, and a more 
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efficient utilization of nitrogen. This efficiency is partly 
attributed to a greater microbial protein production in the 
rumen (Zhou et al., 2017), believed to contribute to the rapid 
recovery of body weight during the summer grazing period 
(Wang et al., 2009). Additionally, the yak’s low maintenance 
protein requirements and reduced body surface area result 
in a lower metabolic rate, collectively contributing to 
their survival in the challenging environmental conditions 
of the Tibetan plateau. While there are variations among 
species, many studies attribute metabolic adaptation to 
high altitudes to a decreased muscle oxidative capacity. In 
this context, lactate dehydrogenase (LDH) plays a crucial 
role in anaerobic glycolysis by catalyzing the conversion 
between pyruvate and lactate, a pivotal process in energy 
metabolism (Huang et al., 2022). Interestingly, unlike 
cattle, yaks exhibit higher LDH activities in the longissimus 
muscle, facilitating carbohydrate utilization under limited 
oxygen supplies. This unique adaptive feature underscores 
the remarkable capacity of yaks to thrive at high altitudes 
(Lin et al., 2011). The evidence that high-altitude yaks in 
the study area exhibit minimal increases in hemoglobin 
content, compared to their counterparts at relatively lower 
altitudes, even when both are above 3000 meters above 
sea level, implies a specific adaptation to the hypoxic 
environment. In this context, yaks residing at high altitudes 
seem to have undergone genetic adaptation to the elevated 
environment, primarily by eliminating the hypoxic 
pulmonary vasoconstrictor response in the absence of a 
hypoxemic stimulus to stimulate red blood cell production 
and increase hemoglobin concentrations (Ma et al., 2022; 
Jiang et al., 2023; Fang et al., 2020).

GENETIC RESISTANCE: YAK 
ADAPTATION TO HIGH-ALTITUDE 

ENVIRONMENTS

Genetic adaptations to new environments and climate 
changes are crucial for the survival of species. The genetic 
mechanisms behind high-altitude adaptation are highly 
complex (Gnecchi-Ruscone et al., 2018; Zhang et al., 2022). 
Recent advancements in the genomic analysis of yaks have 
created exciting prospects for delving into the molecular 
genetic foundations of adaptive physiological traits. Genes 
undergoing positive selection and rapid evolution in the 
yak lineage have been observed to exhibit significant 
enrichment in functional categories and pathways 
associated with hypoxia stress and nutrition metabolism 
(Jiang et al., 2023; Xin et al., 2020; Kour et al., 2022). 
Long-term selection has led to the development of unique 
characteristics in species to cope with extreme terrestrial 
environments (Key and Sneeringer, 2014; Burtscher et al., 
2018). Genetic variation within a population is essential 

for adaptability and species evolution over time (Yan et al., 
2023). Adaptive traits often result from multiple genetic 
mutations, making them challenging to detect (Pritchard 
and Di Rienzo, 2010). Natural selection can occur through 
selective sweeps at specific genetic loci or simultaneous 
shifts in allele frequencies at multiple loci (Hollinger 
et al., 2019). Advances in sequencing and genotyping 
technology have facilitated the identification of genomic 
features related to livestock adaptation. In yak populations, 
several genes associated with high-altitude adaptation 
have been discovered, primarily linked to responses to 
hypoxia, temperature acclimatization, cardiovascular 
system modification, and energy metabolism (Qiu et al., 
2012; Guang-Xin et al., 2019a; Ding et al., 2019).

One key gene that plays a pivotal role in high-altitude 
adaptation is the endothelial PAS domain-containing 
protein 1 (EPAS1) gene, which encodes the hypoxia-
inducible transcription factor (HIF-2α). This gene 
regulates erythropoietin production in response to oxygen 
levels in high-altitude environments (Qiu et al., 2012; Wu 
et al., 2015; Dolt et al., 2007). Another crucial gene is the 
vascular endothelial growth factor-A (VEGF-A) gene, 
responsible for regulating angiogenesis and blood vessel 
size during high-altitude adaptation (Wu et al., 2013). Yaks 
must maintain normal energy production and optimize 
nutritional assimilation due to the limited availability of 
forage resources in high-altitude environments (Yang et 
al., 2022; Wang et al., 2011; Xiong et al., 2020).

Qiu et al. (2012) identified five key genes that 
undergo positive selection in yak nutritional and metabolic 
pathways. Among these genes, the Camk2b gene stands 
out as it regulates gastric acid secretion in the rumen, 
aiding in the assimilation of volatile fatty acids produced 
during ruminal fermentation (Yang et al., 2022; Wiemer 
et al., 2009). Additionally, genes such as Gcnt3, AQP4, 
DCC, GSTCD, ND1, Hsd17b12, GRIK4, IFNLR1, 
Whsc1, and Glul play essential roles in polysaccharide, 
fatty acid, and amino acid metabolism, respectively (Li et 
al., 2009; Ding et al., 2020; Wang et al., 2017, 2019; Shi 
et al., 2017; Guang-Xin et al., 2020). Likewise, Ma et al. 
(2022) reported EPAS1, EGLN1, and PPARA genes which 
play significant roles in high-altitude adaptation.

GENOMIC ADAPTATIONS OF YAKS TO 
HIGH-ALTITUDE ENVIRONMENTS

Since the advent of next-generation sequencing, 
numerous whole-genome sequencing studies of Tibetan 
mammals have been conducted to investigate the molecular 
mechanisms underlying high-altitude adaptation (Kang et 
al., 2022; Gao et al., 2022; Lan et al., 2021; Yue et al., 
2022). The yak, being an ancient species exclusive to 
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the Tibetan Plateau in China, has undergone extensive 
adaptation to challenging natural conditions, including 
hypoxia and low temperatures. Over the course of long-
term adaptation, many genes have exhibited specific 
increases in transcriptional activities, regulating a range 
of metabolic activities within the body (Ge et al., 2021b; 
Yan et al., 2023; Terefe et al., 2022; Chen et al., 2023). 
Gene expression profiles reveal the activation of specific 
molecular pathways regulating responses to external 
stimuli and provide insights into the role of regulatory 
variation in adaptive evolution (Somero, 2005; Liu et 
al., 2021; Qi et al., 2018). Recent studies have identified 
key genes and pathways involved in various biological 
processes, including hypoxia adaptation. Hypoxia-
induced changes in gene expression are coordinated by 
hypoxia-inducible factors (HIFs), which are fundamental 
transcriptional activators responding to reduced oxygen 
availability (Lisy and Peet, 2008; Webb et al., 2009). 
Among HIFs, HIF-1α and HIF-2α play pivotal roles 
in cellular adaptation to hypoxia, regulating multiple 
genes associated with energy metabolism, angiogenesis, 
erythropoiesis, iron homeostasis, and apoptosis (Schofield 
and Ratcliffe, 2004; Maxwell, 2005). Yaks, renowned 
for their adaptation to high-altitude environments and 
exceptional physical endurance, serve as a valuable model 
for understanding high-altitude adaptation at the molecular 
level. Sequencing of yak HIF-1α cDNA by Dolt et al. 
(2007) revealed variant-specific expression in the blood 
and liver, with no expression observed in the lung, heart, 
and kidney. Tissue-specific expression patterns may result 
from alternative splicing, as observed in plateau pikas, 
another high-altitude-adapted species (Zhao et al., 2004).

Comparing tissue-specific expression between yaks 
and cattle, it was found that HIF-1α exhibited ubiquitous 
expression in various tissues of yaks (kidney, heart, 
lung, spleen, and liver) as well as in blood, while HIF-
2α expression was limited to endothelial cells. Expression 
levels of both HIF-1α and HIF-2α were higher in yak 
tissues compared to cattle. Transcriptome studies further 
revealed significant differences in gene expression 
patterns in the heart, lung, and gluteal tissue between the 
two species (Wang et al., 2015; Xin et al., 2019).

CONCLUSIONS

High-altitude environments are known for their harsh 
conditions, marked by low temperatures and oxygen 
pressure. The native high-altitude yak has developed 
unique adaptations through long-term selection, involving 
changes in morphology, physiology, biochemistry, 
and genetics. To comprehensively understand these 
adaptations, there is a need to expand studies and integrate 

research on DNA sequence polymorphism with analyses 
of transcriptional variation. Despite the synergistic impact 
of cold and hypoxia on performance at high altitudes, 
research has predominantly focused on hypoxia alone. The 
paragraph advocates for prioritizing joint investigations 
into these simultaneous environmental stressors. 
Additionally, it highlights the impact of climate change on 
yak habitats, emphasizing the necessity of further research 
to understand how these shifts contribute to changes in yak 
production and the livelihoods of highland communities.
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